首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33493篇
  免费   4964篇
  国内免费   6676篇
测绘学   1833篇
大气科学   5865篇
地球物理   8047篇
地质学   16132篇
海洋学   4575篇
天文学   2545篇
综合类   2626篇
自然地理   3510篇
  2024年   91篇
  2023年   482篇
  2022年   1358篇
  2021年   1629篇
  2020年   1431篇
  2019年   1512篇
  2018年   1900篇
  2017年   1794篇
  2016年   1877篇
  2015年   1491篇
  2014年   1851篇
  2013年   2049篇
  2012年   1888篇
  2011年   2004篇
  2010年   1961篇
  2009年   1873篇
  2008年   1662篇
  2007年   1752篇
  2006年   1444篇
  2005年   1045篇
  2004年   813篇
  2003年   918篇
  2002年   959篇
  2001年   929篇
  2000年   937篇
  1999年   1231篇
  1998年   1016篇
  1997年   1040篇
  1996年   953篇
  1995年   879篇
  1994年   775篇
  1993年   655篇
  1992年   559篇
  1991年   385篇
  1990年   309篇
  1989年   293篇
  1988年   253篇
  1987年   160篇
  1986年   163篇
  1985年   105篇
  1984年   96篇
  1983年   95篇
  1982年   93篇
  1981年   63篇
  1980年   60篇
  1979年   60篇
  1978年   31篇
  1977年   26篇
  1976年   22篇
  1975年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
The article describes heat exchange between basaltic and rhyolite melts accompanied by fractional crystallization of phases in a basaltic melt. A numerical model has been developed for the homogenization mechanism of magma composition during intrusion of basaltic magma batches into felsic magma chambers. The results of numerical modeling demonstrate that the time needed for cooling the basalts and their fractionation to rhyolite melts is much shorter than the time required for chemical interaction based on diffusive mechanisms.  相似文献   
133.
This paper discusses issues of the decline of the reservoir properties of arenaceous-argillaceous rocks as a result of declining porosity due to long-term operation of underground gas storage facilities. An analysis of the many-year operation of storage facilities, as well as calculation, has revealed that the active capacity of a storage reservoir gradually decreases under certain conditions of underground storage operations. We performed a series of experiments with model specimens in order to support the hypothesis of decreasing reservoir (capacity-filtration) properties because of changes in the value and structure of the pore space. These experiments showed that the cyclic loading and unloading of arenaceous-silty rocks during long-term operation of underground gas storage facilities can significantly decrease the reservoir parameters of reservoirs created within worked out gas-and-gas condensate fields. Laboratory studies of model specimens corresponding to feldspar sandstone in their composition, porosity, and strength proved that porosity considerably decreases in such reservoirs at actually existing values of formation pressure. Tests of sand performed under conditions close to those existing during the development of hydrocarbon fields also showed that their permeability gradually decreases in the process of cyclic changes of effective pressure.  相似文献   
134.
The joint evolution of organic matter and silica in petroliferous sequences is considered in the terms of the laws of transformation of dispersion systems. The dispersion systems are transformed under conditions of low-temperature solid-phase processes accompanied by the silica phase transition and dehydration that favors the evolution of organic matter.  相似文献   
135.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
136.
A detailed characterization of the site is crucial to designing an efficient method of managing the risks associated with tailings from abandoned mines. Therefore, samples collected from various depths within tailings in Guryong mine, Korea, were analyzed for their chemical, physical and mineralogical characteristics. All samples of the Guryong tailings had acid-generating potential. However, in the oxidation zone, the net acid generation (NAG) was low (30 kg H2SO4 t−1) although the acid neutralization potential (ANP) was less than zero. The ANP values in the unoxidation zone were higher (> −56.0 kg CaCO3 t−1) than in the other zones. As a result, the amount of alkali ions that are needed to neutralize the acid needs to be considered. In this experiment G3, G4 and G6 drill cores containing fine tailings particles near the unoxidation zone were observed to contain calcite (CaCO3) with acid-neutralizing capacity. A low pH (2−4) in the oxidation zone of the tailings changed to a neutral pH in the unoxidation zone of the tailings. These results suggest that the acid-neutralizing capacity of the tailings was controlled by particle and mineral composition of tailings.  相似文献   
137.
Occurrence and evolution of the Xiaotangshan hot spring in Beijing, China   总被引:1,自引:0,他引:1  
Thermal groundwater occurs in bedrock aquifers consisting of the dolomite of the Wumishan Group of the Jixianin System and the Cambrian carbonate in the Xiaotangshan geothermal field near the northern margin of the North China Plain, China. The hot water in the geothermal field of basin-type discharges partly in the form of the Xiaotangshan hot spring under natural conditions. The hot water has TDS of less than 600 mg/L and is of Na·Ca-HCO3 type. The geothermal water receives recharge from precipitation in the mountain area with elevation of about 500 m above sea level to the north of the spring. Thermal groundwater flows slowly south and southeast through a deep circulation with a residence time of 224 years estimated with the Ra–Rn method. The Xiaotangshan hot spring dried up in the middle of the 1980s owing to the increasing withdrawal of the hot water in the geothermal field in the past decades. The water level of the geothermal system still falls continually at an annual average rate of about 2 m, although water temperature changes very little, indicating that the recharge of such a geothermal system of basin-type is limited. Over-exploitation has a dramatic impact on the geothermal system, and reduction in exploitation and reinjection are required for the sustainable usage of the hot water.  相似文献   
138.
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth. The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e., from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising groundwater level, the concentrations of major anions Cl, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum groundwater depth in the lower reaches of the Tarim River should be −5 m.  相似文献   
139.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
140.
For the assessment of shallow landslides triggered by rainfall, the physically based model coupling the infinite slope stability analysis with the hydrological modeling in nearly saturated soil has commonly been used due to its simplicity. However, in that model the rainfall infiltration in unsaturated soil could not be reliably simulated because a linear diffusion-type Richards’ equation rather than the complete Richards’ equation was used. In addition, the effect of matric suction on the shear strength of soil was not actually considered. Therefore, except the shallow landslide in saturated soil due to groundwater table rise, the shallow landslide induced by the loss in unsaturated shear strength due to the dissipation of matric suction could not be reliably assessed. In this study, a physically based model capable of assessing shallow landslides in variably saturated soils is developed by adopting the complete Richards’ equation with the effect of slope angle in the rainfall infiltration modeling and using the extended Mohr–Coulomb failure criterion to describe the unsaturated shear strength in the soil failure modeling. The influence of rainfall intensity and duration on shallow landslide is investigated using the developed model. The result shows that the rainfall intensity and duration seem to have similar influence on shallow landslides respectively triggered by the increase of positive pore water pressure in saturated soil and induced by the dissipation of matric suction in unsaturated soil. The rainfall duration threshold decreases with the increase in rainfall intensity, but remains constant for large rainfall intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号